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Abstract. The propagators related to a Dirac particle with anomalous magnetic moment in the presence
of a plane wave field are exactly and analytically calculated via the path integral approach in two rep-
resentations: a global and a local one. It is shown that due to two identities, one bosonic and another
fermionic, the path integral calculations are evaluated essentially on classical paths projected along the
wave propagation k. Special cases are considered as well.

1 Introduction

In spite of the achievement that the path integral has
brought about in various domains of physics by trying to
bring back the quantum description of the physical sys-
tems to its classical analogue, it appeared, however, un-
satisfactory in use in the case of the description of the
spin. This apparent inconvenience is due to the fact that
the spin is a purely discrete physical entity which does
not have a classical analogue, whereas the path integral
is elaborated basically by means of classical images such
as trajectories. In attempting to solve this difficulty, there
have been essentially two categories of path integral for-
mulation. The first one, called the bosonic model, proposes
to use commuting variables to describe the spin dynam-
ics and the second one, known as fermionic, uses Grass-
mann (anticommuting) variables. The latter model was
proposed by Berezin and Marinov who have presented the
Dirac propagator by means of a Grassmannian path in-
tegral in the form of exp(i action) [1]. This model is a
renewal of the model due to Fradkin, who was the first to
present an action for the Dirac particle based on Grass-
mann variables. In this last decade, Fradkin and Gitman
have returned to this model by establishing a rigorous for-
mulation of this path integral which is in possession of var-
ious properties, such as gauge invariance, reparametriza-
tion invariance and having a supersymmetric form [2,3].
This possibility in using the Grassmann variables at the
classical level (when � → 0) has appeared to be very inter-
esting because of its direct connection with the theory of
superstrings and the interaction between matter and su-
pergravity. The corresponding physical system is known
as a pseudoclassical one and its pseudoclassical mechanics
has been fully studied [4–7]. This ingenious attempt gave
new breath to the research of the analytical and exact
expressions of the relativistic spinning propagators in the
presence of external fields. In this order many problems

have been solved. For example, we can cite the interac-
tion with a constant electromagnetic field [8], the case of
a plane wave field [9–11] and the combination of the two
configurations of fields [12]. In the case of an intense inter-
action field, it is necessary to take account of some effects
such as the anomalous part of the magnetic moment. For
this case the formulation was also elaborated [13] and the
interaction with the constant field was treated via the per-
turbation method [14].

In what follows, we are interested in the calculations of
this effect in the case of a plane wave interaction with the
purpose of exploiting the constraints introduced in [9–11]
which allow us to deal with the problem of the interaction
of a plane wave with a remarkable simplicity. Thus, we
want to add to the list of the anomaly problems one case
which is exactly soluble. For this, it is first necessary to
briefly recall the path integral construction. The propa-
gator of the Dirac particle with an anomalous magnetic
moment in an external electromagnetic field is the causal
Green’s function Sc(xb, xa) of the Dirac–Pauli equation(

γ · πb − m − µ

2
σ · Fb

)
Sc(xb, xa) = −δ4(xb − xa), (1)

where πµ = (i∂µ − gAµ), g is the electronic charge, µ
describes the additional spin magnetic moment, Fµν =
∂µAν − ∂νAµ, σµν = (i/2) [γµ, γν ]−, [γµ, γν ]+ = 2ηµν ,
ηµν = diag (1,−1,−1,−1) and µ, ν = 0, 3.

The scalar product, denoted by a dot, means that a·b =
aµb

µ, σ · F = σµν · Fµν .
Multiplying by γ5 on both sides of (1), we get(
γ̃ · πb − mγ5 − µ

2
γ5σ̃ · Fb

)
S̃(xb, xa) = δ4(xb − xa), (2)

where S̃ = Scγ5, γ̃µ = γ5γµ, γ5 = γ0γ1γ2γ3 = γ̃5 and
(γ5)2 = −1. The matrices γ̃µ have the same commuta-
tion relations as the initial ones γµ, [γn, γm]+ = 2ηnm,
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n,m = 0, 3, 5, ηnm = diag (1,−1,−1,−1,−1) and �b,a =
� (xb,a).

The presence of the matrix γ5 in this formulation is for
solving the problems of homogenization which is, in fact,
not important when the anomalous magnetic moment is
absent as has been shown recently by elaborating the two
representations known as the local and global representa-
tions [15].

Formally, S̃(xb, xa) is the matrix element in the coor-
dinate space of the inverse Dirac–Pauli operator, namely

S̃(xb, xa) = 〈xb | S̃ | xa〉, (3)

with

S̃ =
(
γ̃µπµ − mγ5 − µ

2
γ5σ̃µνF

µν
)−1

= O−1. (4)

Using the Schwinger trick, we represent S̃ by the following
integral expressions:

S̃ = S̃l = Slγ
5 =

∫ ∞

0
dλ
∫

exp
[
iλ
(
O2 + iε

)
+ χO

]
dχ,

= S̃g = Sgγ
5 = OGg

= O

(
−i
∫ ∞

0
dλ exp

[
iλ
(
O2 + iε

)])
, (5)

where S̃l is called the local representation and S̃g
the global one. It is clear that Gg verifies the following
quadratic Dirac–Pauli equation:

O2
bGg(xb, xa) = δ4(xb − xa), (6)

with

O2 = π2 − m2 − i
(
mµ +

g

2

)
Fαβγ

αγβ

− iµγ5γα
[
Fαβ , π

β
]
+ +

µ2

4
(Fαβγ

αγβ)2,

and S̃g(xb, xa) can be obtained starting from Gg(xb, xa):

S̃g(xb, xa) =
(
γ̃ · πb − mγ5 − µ

2
γ5σ̃ · Fb

)
Gg(xb, xa). (7)

Doing so, we formulate the anomalous magnetic moment
problem in the two projections, the local and the global
one. In the case of the local projection the operator pro-
jection O is replaced by a path integral using a fermionic
proper time χ [13] while for the global one this opera-
tor shall act at the end of the evolution with the aim
to eliminate the superfluous states corresponding to the
square of the Dirac operator and the latter is written in
the path integral representation following [15]. In the case
of the so-called global representation, S̃g, which is a mixed
representation of path integral and projection operator,
the construction of the propagator Gg in the case of the
anomaly was not shown. To do this, it is preferable to
follow step by step the path integral formulation for S̃l.
It is remarkable to see that the calculations of the global

description Gg are similar to those of the local one S̃l.
Consequently, it is convenient to unify these two Green’s
functions into a λ-modified one S̃λ by taking into account
the λ-modified measure of χ which ensures that

S̃λ =

{
S̃l, λ = 1,
Gg, λ = 0.

(8)

In fact, knowing that
∫

dχ = 0 and
∫

dχχ = 1, we easily
write for the Green’s function S̃λ the following result [13,
15]:

S̃λ =
(−i

2

)1−λ

exp
(

iγ̃n ∂l

∂θn

)∫ ∞

0
de0

∫
dχ0

×
∫

DxDeDπDχDνDΨM(e)χ1−λ

× exp

{
i
∫ 1

0

[
− .

x
2

2e
− e

2
M2

− .
x

µ (
gAµ(x) + 4iµΨ5Fµν(x)Ψν

)
+ iegFµν(x)ΨµΨν + iλ

( .
xµ Ψµ

e
− M∗Ψ5

)
χ

− iΨn

.

Ψ
n

+π
.
e +ν

.
χ

]
dτ + Ψn(1)Ψn(0)

}∣∣∣∣∣
θ=0

, (9)

where x, p, λ, π and χ, ν, Ψn, θn are even and odd variables
respectively and satisfy the following boundary conditions:

x(0) = xa, x(1) = xb, λ(0) = λ0, χ(0) = χ0,

Ψn(0) + Ψn(1) = θn, M∗ = m + 2iµFµν(x)ΨµΨν ,

and the measures M(e) and DΨ are defined by

M(e) =
∫

Dp exp
{

i
2

∫ 1

0
ep2dτ

}
,

DΨ = DΨ

[∫
Ψ(1)+Ψ(0)=θ

DΨ exp
(∫ 1

0
Ψn

.

Ψ
n

dτ
)]−1

.

The aim of this paper is to calculate this Green function
S̃λ in the case of a plane wave field. The plane wave field
Aµ is characterized by the following properties:

ϕ = k · x with k2 = 0 and k · A = k · dA
dϕ

= 0. (10)

As we are going to show, thanks to these simple prop-
erties of the plane wave field, the solution may be analyt-
ically obtained.

2 Exact Green’s function calculations

Before starting the calculations, let us first expose our
strategy in treating this problem. Taking advantage of the
fact that the plane wave field is a function of the variable
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k ·x and that the spin interaction depends on the k ·Ψ vari-
able, we introduce two identities which consider these two
variables as independent respectively from x and Ψ . This
allows us to decouple respectively the free quadridimen-
sional exterior motion x and the free quadridimensional in-
terior motion Ψ from the corresponding interaction terms
and consequently to reduce these two quadridimensional
motions to unidimensional ones which are intimately re-
lated to the classical motion.

As usually done, we firstly integrate over π and ν to
fix respectively e to e0 and χ to χ0, and next, as the
plane wave field is only a function of the product k ·x, we
introduce a new variable ϕ = k ·x as independent from the
quadriposition x via a delta functional identity [16–18],∫

dϕadϕbδ(ϕa − k · xa)
∫

DϕDpϕ

× exp[i
∫ 1

0
pϕ(

.
ϕ −k· .

x)dτ ] = 1, (11)

This change permits us to separate the free action term
− .

x
2
/(2e0) from the one of the interaction. Now, we lin-

earize this quadratic term − .
x

2
/(2e0) and then integrate

over the x variables. This makes appear the Dirac func-
tional δ

( .
p
)
, showing that the momentum is a constant of

motion p = const. Accordingly, the propagator is reduced
to

S̃λ =
(−i

2

)1−λ

exp
(

iγ̃n ∂l

∂θn

)∫
d4p

(2π)4

×
∫ ∞

0
de0 exp

[
ip · (xb − xa) +

ie0

2
(p2 − m2)

]
×
∫

dχ0χ
1−λ
0

∫
dϕadϕbδ(ϕa − k · xa)

×
∫

DϕDpϕDΨ exp

{
i
∫ 1

0

[
e0

(
gA · p +

g2

2
A2
)

+ pϕ(
.
ϕ +e0p · k − iλk · Ψχ0)

+ ie0(g + 2mµ)FµνΨ
µΨν

+ 4iµe0Ψ
5Fµν [p + gA]µΨν

− iλ
[
(p + gA) · Ψ + (m − 2iµFµνΨ

µΨν)Ψ5]χ0

− iΨn

.

Ψ
n

]
dτ + Ψn(1)Ψn(0)

}∣∣∣∣∣
θ=0

. (12)

It is remarkable to see that the introduction of this con-
straint has simplified the calculations by bringing the
study of the motion from quadridimensional space xµ to
a unidimensional space described by the variable ϕ. Fur-
thermore, we point out that the coupling term of the spin
variables with the electromagnetic field is written as

FµνΨ
µΨν = 2(k · Ψ)(A′ · Ψ), (13)

where the prime indicates a derivative with respect to the
argument ϕ. We then proceed in the same way for the

Grassmann case, by suggesting the introduction of a sec-
ond variable η which considers k · Ψ independent of Ψ via
the following identity [10,11]:∫

dηadηbδ(ηa − k · Ψa)

×
∫

DηDpη exp
[
i
∫ 1

0
pη

( .
η −k· .

Ψ
)

dτ
]

= 1, (14)

where the variables η and pη are of the same nature as Ψ ,
i.e. they are odd (Grassmann) variables.

Knowing that the propagators of the spin variables are
subject to the boundary condition Ψn (1)+Ψn(0) = θn, re-
flecting the antiperiodic character of the spin, and that the
exponential contains an additional term Ψn(1)Ψn(0), it is
convenient to elude these complications by passing to the
velocity space following the variable change Ψ(τ) → ω (τ):
Ψn(τ) = (1/2)

∫ 1
0 ε(τ − τ ′)ωn(τ ′)dτ ′ + (θn/2); ε (τ) is the

sign of τ , where the velocity ω (τ) is an odd (Grassmann)
variable.

We should note that during the initial and final time,
the so-called antiperiodic boundary condition is always
satisfied. In other words, the velocity variables are not
subject to any restriction, in contrast to the Ψµ. Moreover,
following this transformation, a quadratic term in ω (τ)
has appeared in the action. Therefore, the Green function
becomes

S̃λ =
(−i

2

)1−λ

exp
(

iγ̃n ∂l

∂θn

)∫
d4p

(2π)4

∫ ∞

0
de0

× exp
[
ip · (xb − xa) +

ie0

2
(p2 − m2)

] ∫
dχ0χ

1−λ
0

×
∫

dϕadϕbdηadηbδ (ϕa − k · xa) δ
(
ηa +

k

2
· (ω − θ)

)
×
∫

DϕDpϕDηDpηDω

× exp

{
i
∫ 1

0

[
e0

(
gA · p +

g2

2
A2
)

+ pϕ(
.
ϕ +e0p · k − iληχ0) + pη

( .
η −k · ω

)
− iλ

2
[
(p + gA) · (εω + θ) + m(εω5 + θ5)

]
χ0

+ ie0(g + 2mµ)ηA′ · (εω + θ)
+ 2iµe0(εω5 + θ5)

×
[

1
2

(
p · k − iλ

e0
ηχ0

)
A′ · (εω + θ)

− ηA′ · (p + gA)

]
+

i
2
ωnεω

n

]
dτ

}∣∣∣∣∣
θ=0

, (15)

where we have used the following notations:

AεB =
∫ 1

0
A (τ) ε(τ − τ ′)B (τ ′) dτ ′,

Dω =
(√

Detε
)−1

Dω.
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In order to extract the classical equation of motion let us
make the following shift:

ωµ(τ) −→ ωµ(τ) + ikµ

∫ 1

0
ε−1(τ − τ ′)pη(τ ′)dτ ′. (16)

Consequently, the integration over pη (τ) will be straight-
forward and the Dirac functional appears as

δ(
.
η +(λp · k/2)χ0)

which expresses that the contribution to the propagator
calculus comes essentially from the path verifying the
equation

η(τ) = ηλ(τ) = ηa − λp · k
2

χ0τ, (17)

which is the classical equation of motion.
In effect, starting from the Lagrangian present in (9),

we derive the classical equations of motion. Then multi-
plying them by kµ, we easily get

p · k = const,

− (k· .
x)

e0
+

iλ(k · Ψ)χ0

e0
= p · k,

k · Ψ̇ − λ
(
k· .

x
)

2e0
χ0 = 0. (18)

Combining these three equations we obtain (17).
In order to integrate over ω (τ), let us go back to in-

tegral form of the Dirac function δ (ηa + (k/2) · (ω − θ)).
So, the propagator function related to the ω (τ) variables
will take the following form:∫

Dω exp
{−1

2

∫ 1

0

∫ 1

0
ωn(τ)Mnm(τ, τ ′)ωm(τ ′)dτdτ ′

+
∫ 1

0
Jn(τ)ωn(τ)dτ

}∣∣∣∣
θ=0

, (19)

where we have defined

Mnm =

[
ηµνε 0
C5ν −ε

]
,

C5ν(τ, τ ′) = 2µe0

(
p · k − iλ

e0
ηaχ0

)
×
∫ 1

0
A′

ν [ϕ (τ1)] ε(τ1 − τ)ε(τ1 − τ ′)dτ1, (20)

Jµ (τ) = −e0(g + 2mµ)

×
∫ 1

0
ηλ (τ ′)A′

µ [ϕ (τ ′)] ε (τ ′ − τ) dτ ′

− λ

2
χ0

∫ 1

0
[pµ + gAµ [ϕ (τ ′)]]ε (τ ′ − τ) dτ ′

− µe0

(
p · k − iλ

e0
ηaχ0

)
θ5

×
∫ 1

0
A′

µ [ϕ (τ ′)] ε (τ ′ − τ) dτ ′ +
i
2
kµpηa , (21)

J5(τ) = −mλ

2
χ0

∫ 1

0
ε(τ ′ − τ)dτ ′

+ µe0

(
p · k − iλ

e0
ηaχ0

)
×
∫ 1

0
A′ [ϕ(τ ′)] · θε(τ ′ − τ)dτ ′

− 2µe0

∫ 1

0
ηλ (τ ′)A′ [ϕ (τ ′)] · [p + gA [ϕ (τ ′)]]

× ε (τ ′ − τ) dτ ′. (22)

The integral over the variable ω(τ) is Gaussian and the
result is obtained straightforwardly. It is equal to

√
det M exp

{−1
2

∫ 1

0

∫ 1

0
Jn(τ)M−1

nm(τ, τ ′)Jm(τ ′)dτdτ ′
}
.

(23)
The inverse matrix M−1 can be easily calculated using
the iteration method and its result is then given by

M−1
nm =

[
ηµνε

−1 0
C−1

5ν −ε−1

]
,

C−1
5ν (τ, τ ′) = −2µe0

(
p · k − iλ

e0
ηaχ0

)
× δ (τ − τ ′)A′

ν [ϕ(τ)] . (24)

It is easy to verify that DetM = Det (ε). Accordingly, the
Green function is rewritten

S̃λ =
(−i

2

)1−λ

exp
(

iγ̃n ∂l

∂θn

)∫
d4p

(2π)4

∫ ∞

0
de0

× exp
[
ip · (xb − xa) +

ie0

2
(p2 − m2)

]
×
∫

dχ0χ
1−λ
0

∫
dϕadϕbdηadηbδ(ϕa − k · xa)

× δ

(
ηb − ηa +

λp · k
2

χ0

)∫
dpηa

∫
DϕDpϕ

× exp

{
i
∫ 1

0

[
pϕ(

.
ϕ +e0p · k − iληaχ0)

+ pηa

(
ηa − k · θ

2
− λp · k

4
χ0

)
+

3∑
k=0

µkFk (e0, χ0, θ, ϕ) dτ

]}
θ=0

, (25)

where

F0 (e0, χ0, θ, ϕ) = e0

(
gA · p +

g2

2
A2
)

+ ige0ηλA
′ · θ

− iλ
2
[
(p + gA) · θ + mθ5)

]
χ0

− iλge0

2
ηaχ0 [e0p · kgτA′ · εA′ + A′ · ε (p + gA)] ,

F1 (e0, χ0, θ, ϕ) = ie0

{
λ

2
(
p · kθ5 + 2mηa

)
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× [−e0pkgτA
′ · εA′ − A′ · ε (p + gA)]χ0

+2mηλA
′ · θ +

[
2θ5 + mλχ0 (2τ − 1)

]
×
[
1
2

(
p · k − iλ

e0
ηaχ0

)
A′ · θ − ηλA

′ · (p + gA)
]}

,

F2 (e0, χ0, θ, ϕ) = ie2
0

{
1
2
(p · k − iλ

e0
ηaχ0)2A′ · θεA′ · θ

+2λp · kηaχ0τA
′ · (p + gA) εA′ · (p + gA)

−2p · kηλA
′ · (p + gA) εA′ · θ

−λ (p · k)2

2
χ0A

′ · [ε (p + gA)] (εA′ · θ)
+λp · kχ0ηaA

′ · [ε (p + gA)] [εA′ · (p + gA)]

−ge0 (p · k)2 A′ · (εηλA
′) (εA′ · θ)

+2ge0p · kA′ · [εηλA
′] [εηλA

′ · (p + gA)]

}
,

F3 (e0, χ0, θ, ϕ) = ie3
0

{
− A′ ·

[
ε

(
2m (p · k)2 ηλ

+
(
p · k − iλ

e0
ηaχ0

)3

θ5

)
A′
]

(εA′ · θ)

+2p · kA′ · [ε (p · kθ5 + 2mηλ

)
A′]

× [εηλA
′ · (p + gA)]

}
.

The integration over pηa gives

δ(ηa − (k · θ/2) − (λp · k/4)χ0)

which fixes
ηa =

k · θ
2

+
λp · k

4
χ0, (26)

assuring that the boundary condition is always satisfied:
ηb + ηa = k · θ |θ=0.

The integration over pϕ gives

δ(
.
ϕ +e0p · k − (iλk · θ/2)χ0) ,

which imposes on the path ϕ (τ) the function of verifying
the classical equation of motion

ϕ (τ) = ϕa −
(
e0p · k − iλk · θ

2
χ0

)
τ. (27)

This latter equation concords with the second equations
of (18) obtained from the classical Lagrangian Let us also
note that for the global projection (λ = 0), the spin does
not intervene on the classical exterior motion. In order
to integrate over ϕb and ϕa, we insert the integral form
of the Dirac function δ(ϕb − ϕa + e0p · k − (iλk · θ/2)χ0)
and make the following shift: pµ → pµ − kµpϕb

. Thus,
integrating over χ0 and e0, and changing pµ → −pµ, we
obtain for the Green function the following expression:(

S̃l

Gg

)
=

1
(2π)4

∫
d4p

(p2 − m2 + i0)

(
Φ̃l(p, xb, xa)
Φ̃g(p, xb, xa)

)
(28)

× exp

[
−ip · (xb − xa) − ig

p · k
∫ k·xb

k·xa

(
A · p − g

2
A2
)

dϕ

]
,

where the spin factors have the following forms:(
Φ̃l(p, xb, xa)
Φ̃g(p, xb, xa)

)
= exp

(
iγ̃n ∂l

∂θn

)(
iLnθ

n

1

)

× exp
(
θµRµνθ

ν+θ5R5µθ
µ
) ∣∣∣∣∣

θ=0

, (29)

with

Rµν =
− (g + 2mµ)

2p · k kµ (Ab − Aa)ν

+ µ2 (Aµ
b A

ν
a + kµ (Ab + Aa)ν

G−)
+
∫ k·xb

k·xa

dϕ

{
µ2
(

− A′µAν

+
1

p · kk
µAνA′ · (2p − g (Ab + Aa))

)
+ 2µ3mkµS′Aν

}
,

R5µ = µ
(
(Ab − Aa)µ + kµG

−
)

− 2p · kµ3
∫ k·xb

k·xa

S′ (Aµ + kµG) dϕ,

L5 = m +
µg

2
(Ab − Aa)2 + 4p · kµ3

(
Ab · AaGb

+
∫ k·xb

k·xa

dϕ
(
p · kG′S − 1

k · (xb − xa)
Ab · AaG

)
− p · k

k · (xb − xa)

∫ k·xb

k·xa

dϕ
∫ ϕ

k·xa

dϕ′G′S

)
,

Lµ = −pµ +
g

2
(Ab + Aa)µ

+
g

2p · kkµ [gAb · Aa − p · (Ab + Aa)]

− µgm

2p · kkµ (Ab − Aa)2

+ µ2
[

− g

2
(Ab + Aa)µ (Ab − Aa)2

− kµ

(
G+ (gA2

a + p · (Ab − Aa)
)− gAb · AaG

−) ]
+ 2µ3m

(
(Ab + Aa)µ + kµG

−
)
Ab · Aa

+
∫ k·xb

k·xa

dϕ

{
µ2

(
gA′ · (Ab − Aa)Aµ

+ 2kµ

[
A′ · (p − gAa) +

1
k · (xb − xa)

Ab · Aa

]
G

)

+ 2µ3m

{
− 2A′ ·

(
2A − Ab
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− 1
k · (xb − xa)

ε (ϕ)A
)
Aµ − 1

k · (xb − xa)

×
(
(Ab + Aa)µ + kµG

+
) (

A2 + A′ε (ϕ)A
)

− 2kµ

[
A′ · Aa − 1

k · (xb − xa)

× (Ab · Aa + A′ · ε (ϕ)A)

]
G

}}

+
2

k · (xb − xa)

∫ k·xb

k·xa

dϕ
∫ ϕ

k·xa

dϕ′
{
µ2p · kkµG

′S

+ 4µ3m

(
A′ · A (Aµ+kµG) +

p · k
2

G′S
)}

,

where the prime indicates a derivative with respect to the
argument ϕ.

We also notice that we have used the following nota-
tions in order to write the previous expressions in a con-
venient form:

G =
−1
p · k

(
A · p − g

2
A2
)
,

G± = Gb ± Ga,

S =
1

p · kA · [A − (Ab + Aa)] ,

ε (ϕ)A =
∫ ϕ

kxa

A (ϕ′) dϕ′ −
∫ kxb

ϕ

A (ϕ′) dϕ′.

Finally, to extract explicitly the spin factor, let us proceed
to the derivation over the θ variables. The calculations
are done in the usual way [9–11], by acting the operator
∂l/∂θ

n and then replacing the θ variables by the γ̃n matri-
ces. In both the case of the global and the local derivation,
it is very easy to obtain the following results for the spin
factor:

Φ̃l(p, xb, xa)

= −γ5Lµ

[
γµ
(
1 + iRρδσ

ρδ
)− iR5ν

(
σµν − 2iR∗µνγ5)

+ (Rµ
ν − R µ

ν ) γν
]

− γ5L5
[
1 + iRµνσ

µν + RµνR∗µνγ5] ,
Φ̃g(p, xb, xa)
= (1 + R5ργ

ρ) (1 + iRµνσ
µν)

+Rµ
5 [Rµν−Rνµ] γν+RµνR∗µνγ5, (30)

with R∗µν = (1/2)εµνρδRρδ (εµνρδ is the Lévi-Civita ten-
sor). Using Sc = −S̃γ5 and according to (7), the dynamics
of the system is thus totally determined by the following
expression in the local and global representations:

Sc = −
∫

d4p

(2π)4(p2 − m2 + i0)
Φp(xb, xa) (31)

×exp

[
−ip · (xb − xa) − ig

p · k
∫ k·xb

k·xa

(
A · p − g

2
A2
)

dϕ

]
,

where

Φp(xb, xa) = Φl
p(xb, xa) = Φg

p(xb, xa), (32)

with

Φl
p(xb, xa) = Lµ

[
γµ
(−1 + iRρδσ

ρδ
)

− iR5ν

(
σµν − 2iR∗µνγ5)− (Rµ

ν − R µ
ν ) γν

]
+ L5

[
1 + iRµνσ

µν + RµνR∗µνγ5] , (33)

and

Φg
p(xb, xa) =

[
p̂ + m − gÂb + iµk̂Â′

b

+
1

p · k k̂
(
gAb · p − g2

2
A2

b

)
+ ik̂

(
∂

∂ (k · xb)

)]
×
[
(1 − R5ργ

ρ) (1 + iRµνσ
µν)

−Rµ
5 [Rµν − Rνµ] γν + RµνR∗µνγ5

]
, (34)

and where we have used the notation â = a · γ.
The propagator related to our problem, (31), has thus

been calculated exactly and analytically. It is easy to find
out that this propagator is a solution of (1).

This is our main result.
To extract the wave functions from the analytical ex-

pression of the propagator (31), it is necessary to perform
the symmetrization of the latter. The calculus becomes
very long but in principle it causes no difficulty.

Then, to be more effective, it would be interesting to
get the exact and explicit result in particular cases such
as
(1) a charged particle with a weak anomalous magnetic

moment, and
(2) a neutral Dirac particle with a weak anomalous mag-

netic moment.

3 Some special cases

3.1 Charged particle
with a weak anomalous magnetic moment

For this special case we will consider just the first order
in µ. The Polyakov spin factor will be given in both the
cases of global and local projections by

Φp(xb, xa) = (p̂ + m)
[
1 +

g

2pk
k̂(Âb − Âa)

]
− gÂb

+
g

p · k k̂Ab · p − g2

2p · k k̂ÂbÂa

+ µ

[
(p̂ + m − gÂb)

×
(

m

p · k k̂(Âb − Âa) − (Âb − Âa) − k̂G−
)

+ gk̂(Âb − Âa)Gb

]
. (35)
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Then, after the symmetrization, we easily get the following
result:

Sc(xb, xa) = − 1
(2π)4

∫
d4p

(p2 − m2 + i0)

× exp
{

g

2p · k k̂Âb

+ µ

[
m

p · k k̂Âb + Âb − 1
p · k k̂Ab · p

]}
× (p̂ + m) exp

{ −g

2p · k k̂Âa

+ µ

[−m

p · k k̂Âa + Âa − 1
p · k k̂Aa · p

]}
× exp

{
− ip · (xb − xa)

− ig
p · k

∫ k·xb

k·xa

(
A · p − g

2
A2
)

dϕ

}
. (36)

In order to determine the wave functions, let us integrate
over the energy p0 and carry out the projection on the
positive and negative energy states [19]:

Λ+ (p) =
∑
±s

u (p, s)u (p, s) =
p̂ + m

2m
, (37)

Λ− (p) = −
∑
±s

v (p, s) v (p, s) =
−p̂ + m

2m
;

we thus obtain the following form for Sc(xb, xa):

Sc(xb, xa) = +iθ (tb − ta)
∫

d3p
∑
±s

ψ(+)
s,p (xb)ψ

(+)
s,p (xa)

−iθ (ta − tb)
∫

d3p
∑
±s

ψ(−)
s,p (xb)ψ

(−)
s,p (xa) , (38)

where the normalized wave functions describing the mo-
tion of the Dirac particles are

ψ(+)
s,p (x) =

1
(2π)3/2

(
m

p0

)1/2

× exp
{

g

2p · k k̂Â + µ

[
m

p · k k̂Â + Â − 1
p · k k̂A · p

]}
×u (p, s) (39)

×exp

{
−ip · x − ig

p · k
∫ k·x

k·x0

(
A · p − g

2
A2
)

dϕ

}
,

ψ(−)
s,p (x) =

1
(2π)3/2

(
m

p0

)1/2

× exp
{ −g

2p · k k̂Â + µ

[−m

p · k k̂Â + Â − 1
p · k k̂A · p

]}
×v (p, s) (40)

×exp

{
ip · x − ig

p · k
∫ k·x

k·x0

(
A · p +

g

2
A2
)

dϕ

}
,

where p0 =
(
p2 + m2

)1/2; k · x0 is a constant and u (p, s)
and v (p, s) are the spinors which are the solutions of
the free Dirac equation; u (p, s)u (p, s) = 1 and v (p, s)
v (p, s) = −1.

In the case of a charged particle without the anomalous
magnetic moment, we suppress the anomalous magnetic
moment µ in (39) and (40). Thus, the wave functions are

ψ(+)
s,p (x) =

1
(2π)3/2

(
m

p0

)1/2 [
1 +

g

2p · k k̂Â
]
u (p, s)

× exp

{
−ip · x − ig

p · k
∫ k·x

k·x0

(
A · p − g

2
A2
)

dϕ

}
,

(41)

ψ(−)
s,p (x) =

1
(2π)3/2

(
m

p0

)1/2 [
1 − g

2p · k k̂Â
]
v (p, s)

× exp

{
ip · x − ig

p · k
∫ k·x

k·x0

(
A · p +

g

2
A2
)

dϕ

}
,

(42)

The result agrees with the literature [9–11]

3.2 Neutral Dirac particle
with a weak anomalous magnetic moment

For this special case we will consider the neutral particle
with a weak anomalous magnetic moment. We put g = 0
in (39) and (40); thus, the wave functions are

ψ(+)
s,p (x) =

1
(2π)3/2

(
m

p0

)1/2

× exp
{
µ

[
m

p · k k̂Â + Â − 1
p · k k̂A · p

]}
×u (p, s) exp(−ip · x), (43)

ψ(−)
s,p (x) =

1
(2π)3/2

(
m

p0

)1/2

× exp
{
µ

[−m

p · k k̂Â + Â − 1
p · k k̂A · p

]}
×v (p, s) exp(ip · x). (44)

This result is in accordance with that of [20].

4 Conclusion

We have shown through this problem of the particle with
anomalous magnetic moment that the propagator of this
particle is exactly and analytically calculable by two ap-
proaches: the global and the local one, and due to two
identities, the first one related to x (time-space), and the
second one related to Ψ (spin-space).

The two identities we introduced have allowed us to
reduce the contributions of all the paths to a calculus of
the propagators with principally classical paths projected
along the direction of the plane wave propagation k.
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